The numerical solution of a nonlinear hypersingular boundary integral equation
نویسندگان
چکیده
منابع مشابه
The numerical solution of a nonlinear hypersingular boundary integral equation
In this paper we consider a direct hypersingular integral approach to solve harmonic problems with nonlinear boundary conditions by using a practical variant of the Galerkin boundary element method. The proposed approach provides an almost optimal balance between the order of convergence and the numerical effort of work to compute the approximate solution. Numerical examples confirm the theoret...
متن کاملNumerical solution of a type of weakly singular nonlinear Volterra integral equation by Tau Method
In this paper, a matrix based method is considered for the solution of a class of nonlinear Volterra integral equations with a kernel of the general form $s^{beta}(t-s)^{-alpha}G(y(s))$ based on the Tau method. In this method, a transformation of the independent variable is first introduced in order to obtain a new equation with smoother solution. Error analysis of this method is also ...
متن کاملThe Numerical Solution of a Nonlinear Boundary Integral Equation on Smooth Surfaces
We study a boundary integral equation method for solving Laplace s equation u with nonlinear boundary conditions This nonlinear boundary value problem is reformulated as a nonlinear boundary in tegral equation with u on the boundary as the solution being sought The integral equation is solved numerically by using the collocation method with piecewise quadratic functions used as approximations t...
متن کاملSolution of a hypersingular integral equation in two disjoint intervals
A hypersingular integral equation in two disjoint intervals is solved by using the solution of Cauchy type singular integral equation in disjoint intervals. Also a direct function theoretic method is used to determine the solution of the same hypersingular integral equation in two disjoint intervals. Solutions by both the methods are in good agreement with each other.
متن کاملA fast algorithm for solving nonlinear hypersingular integral equation
where 0 < ε < 1, and the unknown function g satisfies the boundary conditions g(±1) = 0. The integral has to be understood as the finite part of the strongly singular integral in the sense of Hadamard, who introduced this concept in relation to the Cauchy principal value. In fact, the toughness of brittle solids such as ceramics and cement-like materials can be increased considerably by the use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2001
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(00)00269-7